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The supposed object of a scaling factor is to make the calculated intensity of reflexion, on the average, 
equal to the observed intensity. Refinement of an adjustable scaling factor by least-squares procedures 
does not achieve this aim; there is a systematic error whose magnitude depends on the residual refined. 

Ideally the calculated and observed values for the inten- 
sity of an X-ray reflexion should agree exactly. In 
practice, there are always differences between the ob- 
served intensities I and the calculated intensities H; 
the various residuals used in least-squares refinement 
are different average measures of the differences. Only 
if certain conditions are satisfied will refinement of dif- 
ferent residuals lead to the same values of the param- 
eters refined, and still other conditions must be satis- 
fied if the values of the parameters are to be unbiased 
(see, for example, Wilson, 1973). Observed intensities 
are normally on a relative scale, and the calculated 
intensities must therefore be multiplied by a scaling 
factor E before making the comparison. [The reasons 
for including the scaling factor in H rather than in I 
have been given by, for example, Cruickshank (1970).] 
Appropriate values of the scaling factor can be ob- 
tained at each stage of the refinement by making the 
average values of H and I agree, an extension of the 
approximate procedure proposed by Wilson (1942). 
Least-squares adjustment of the scaling parameter will 
normally give significantly different values of E. Wilson 
(1974a) has shown that if 

RI = ( ( F -  G)Z)/ ( F z) (1) 

is the residual based on the magnitude of the observed 
structure factor F and of the calculated structure factor 
G, scaled so that 

(FZ) = ( I ) =  ( H )  = (G2) , (2) 

then refinement of the scaling factor El in the modified 
residual 

$1 = ( ( F -  EIG)2)/(F 2) (3) 
leads to 

E l =  1-½R1,  (4) 

(Sx)min = R~(1-¼R0.  (5) 

In typical cases E1 will differ from the value 1 [expected 
from (2)] by some per cent. The present note discusses 
scaling in the case of the residual Rz. Ordinarily this 
gives simpler calculations than RI does (Wilson, 1969; 
Lenstra, 1974), but here the results are more complex 
and less straightforward in interpretation. 

The residual R2 is defined by 

R2= ( ( I -  H)2)/(12),  (6) 

where H has been scaled in accordance with (2). The 
residual modified by including an adjustable scaling 
factor is 

$2 = ( ( I -  E2H)2)/ (12) . (7) 

Multiplying out and minimizing with respect to E2 
gives 

R 2 = l - Z ( H I ) / ( I Z ) + ( H 2 ) / ( I 2 ) ,  (8) 

E 2 = ( H I ) / ( H Z )  , (9) 

(S2)min = 1 - ( H I ) Z / ( H  z) (IZ) . (10) 
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These equations contain two unknown ratios, (H2>/ 
(i2> and (HI) / ( IZ) ,  so that E2 and (Sz)min cannot be 
expressed in terms of R2 alone. Eliminating <HI> be- 
tween (8) and (9) gives 

E2= I +[(1 - Rz) <I2>-<H2>]/2<H2>. (11) 

The scaling factor E2 is thus greater than (less than) 
unity if ( 1 -  R2) (i2> is greater than (less than) (H2). 

The differences between the observed and calculated 
intensities arise from three sources" (i) random errors 
in the observed intensities (statistical fluctuations in 
counting rates or the equivalent, irregular backlash, 
etc.); (ii) defects in the model from which the intensities, 
are calculated (incorrect scattering factors, lack of 
proper allowance for extinction, failure to allow for 
anharmonic temperature motion, etc.); and (iii) in- 
complete refinement of adjustable positional etc. pa- 
rameters in the model. This division has been discussed 
many times, for example by Shoemaker (1968) and 
Wilson (1973). It will be noted that what are sometimes 
regarded as 'systematic errors' in the observations are 
here classified as defects in the model. From one point 
of view the true intensity, say K, is 

K = I + a  , (12) 

where a is the random error, and from another 

K = H + f i  , (13) 

where fi is the effect of defects in the model. Obviously, 
from the nature of random error, 

<o>= <Ka>=0,  (14) 

but there is no reason to suppose that 

<K6>=0, (15) 

though (2) requires that 

<6>=0.  (16) 

The scaling factor E2 derived from (9) will have the 
'expected' value unity if the only error present is ran- 
dom, as in this case H =  K and I =  K - a .  At the other 
extreme, if the random error is negligible but the model 
is defective, the scaling factor becomes 

E2 = <H(H-a)>/ (H 2> (17) 

= 1 - ( H g > / ( H ~ > .  (18) 

Although (f i)=0,  there is no reason to suppose that 
<Hg>=0; one knows that if extinction is neglected 8 
is likely to be large and negative for large H, but small 
for small H, and many other defects in the model may 
vary systematically with the magnitude of H. 

If both types of error are present the scaling factor is, 
from (9), (12) and (13), 

E2=I-<Hg>/(H2>+<Ha>/(H2>, (19) 

or, on using (13) and (14), 

E2= 1-<Hg>/<H2>-<ga>/<HZ> . (20) 

The third term in (20) depends on the covariance of 
the defects in the model and the statistical error, and at 
first sight one is tempted to put it equal to zero. How- 
ever, ~ includes the effects of incorrect values of the 
adjustable parameters (positional, thermal . . . .  ), and 
the refinement program will attempt to adjust these so 
that g becomes as nearly as possible equal to a, rather 
than as nearly as possible equal to zero. The covariance 
will presumably be small when the number of observed 
intensities greatly exceeds the number of adjustable 
parameters, but will become important if the difference 
is small; in the extreme case when the numbers are 
equal it might be possible to obtain an exact match, so 
that all calculated intensities agreed exactly with those 
observed, however large the statistical errors and how- 
ever defective the model. 

Any method of scaling is, &course, subject to defects 
in the model; even so-called absolute methods depend 
on measurements of crystal shape, volume, absorption 
coefficient, and density, as well as on chemical anal- 
ysis. Equalization of observed and calculated intensi- 
ties depends on, in addition, the values adopted for the 
scattering factors, and on effects like extinction (though 
this could largely be avoided by omitting reflexions of 
high intensity); it is insensitive to errors in positional 
parameters, and can be carried out in a fashion that 
makes it insensitive to assumptions about thermal 
parameters. Minimization of a residual is sensitive, in 
addition, to errors in the placement of atoms (Wilson, 
1969, 1974b), to errors in the model of thermal motion 
(e.g. neglect of libration or anharmonic oscillation), 
and to incomplete refinement. It is likely that there will 
be difficulties in determining, for example, occupancy 
factors if it is attempted to treat both scaling factor 
and the occupancy factors as parameters to be refined 
by least-squares calculations. 

We are greatly indebted to Professor D. W. J. Cruick- 
shank for helpful correspondence. 
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